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Allotypes of the natural killer (NK) cell receptor KIR3DL1 vary in both NK cell expression patterns and inhibitory capacity
upon binding to their ligands, HLA-B Bw4 molecules, present on target cells. Using a sample size of over 1,500 human
immunodeficiency virus (HIV)+ individuals, we show that various distinct allelic combinations of the KIR3DL1 and HLA-B loci
significantly and strongly influence both AIDS progression and plasma HIV RNA abundance in a consistent manner. These genetic
data correlate very well with previously defined functional differences that distinguish KIR3DL1 allotypes. The various epistatic
effects observed here for common, distinct KIR3DL1 and HLA-B Bw4 combinations are unprecedented with regard to any pair of
genetic loci in human disease, and indicate that NK cells may have a critical role in the natural history of HIV infection.

NK cells are critical components of the innate immune system that
have direct involvement in the antiviral immune response1. NK cells
are controlled by many activating and inhibitory receptors2,3, includ-
ing members of the killer cell immunoglobulin-like receptor (KIR)
family. Similarly to other NK cell receptors, KIRs are expressed on
T cells as well as on NK cells, affirming their role in both innate and
adaptive immunity, but they are distinct from other NK cell receptors
in that they are exceptionally diverse and rapidly evolving4. Each KIR
locus encodes either an inhibitory or an activating receptor, except for
the KIR3DL1 gene, which encodes one common activating allotype,
KIR3DS1, and several inhibitory allotypes. The ligands for the
inhibitory KIR3DL1 allotypes are HLA-B molecules that contain the
Bw4 motif at positions 77–83 (ref. 5), particularly the subset of Bw4
allotypes containing isoleucine at position 80 (Bw4-80I) as opposed to
those with threonine (Bw4-80T) at this position5–7. The ligands for
KIR3DS1 are not known, but this molecule shares 97% sequence
similarity with KIR3DL1 allotypes and may recognize a similar or
overlapping set of ligands.

KIRs are expressed in a variegated manner on the NK cell popula-
tion of a given individual8: only a certain percentage of NK cells
express the product of a given KIR gene. Further, mean fluorescence
intensity measurements show subtypes of KIR3DL1 to be expressed at
different abundances on NK cells9. Recently, it was shown that NK cell
inhibitory capacities of individual KIR3DL1 allotypes are closely
linked to their abundances on NK cells and to the percentages of
cells expressing these molecules within the NK cell population of a
given individual10. The functional repercussions of variability at the
KIR3DL1 locus provide a logical, operative grouping system for the
alleles of this locus: alleles encoding high-expression allotypes
(KIR3DL1*h), low-expression allotypes (KIR3DL1*l), and no cell
surface expression (*004). KIR3DL1*004 represents an unusual allele
as it encodes a protein that is retained within the cell11, a characteristic
that may have functional importance. Variation in the affinity of
individual KIR3DL1 allotypes for various HLA-B Bw4 allotypes
(controlling for expression levels) has also been shown to a limited
extent6,10: the KIR3DL1 high-expression allotypes that have been
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tested show higher affinity for Bw4-80I allotypes than for Bw4-80T,
which results in greater inhibition through Bw4-80I recognition.

The most protective HLA class I alleles in terms of HIV disease
progression belong to the group of HLA-B Bw4 alleles. In particular,
two of these Bw4 alleles, B*27 and B*57 (HLA-B alleles being repre-
sented hereinafter by the allele names standing alone), show the
greatest protection in several genetic and functional studies (reviewed
in ref. 12), the basis of which stems, at least in part, from the immuno-
dominant HIV peptides recognized by these allotypes in acquired
immune responses13. However, many of the other members of the
Bw4 group also tend toward protection relative to the alternative group
of HLA-B alleles, Bw6 (ref. 14). As individual allotypes belonging to the
Bw4 group recognize distinct peptide motifs15, it is unlikely that com-
mon peptide recognition explains the protection conferred by Bw4 as a
group; rather, overall Bw4 protection probably has to do with the
function of these molecules in the innate immune response as ligands
for KIR3DL1 and/or KIR3DS1 (KIR3DL1;3DS1) (ref. 16). Indeed, we
have previously shown that the activating KIR3DS1 allele in combina-
tion with Bw4-80I associates with protection against HIV disease
progression17, as well as against opportunistic infections in HIV+

individuals18. These data raise the possibility that KIR3DS1 may bind
one or more of the HLA-B Bw4-80I allotypes on cells infected with
HIV-1, directly mediating effector cell killing of the infected target, a
parsimonious model in which NK cell activation renders protection
against HIV. Given the functional diversity of the KIR3DL1 subtypes in
terms of the degree of inhibition they confer, it is possible that they may
also differentially affect HIV pathogenesis (apart from the protection
conferred by KIR3DS1 + Bw4-80I).

Here we tested the effects of inhibitory KIR3DL1 subtypes in
combination with HLA-B allelic groups on HIV disease progression
and viral load. These data illustrate a primary role for various distinct
combinations of KIR3DL1 and HLA-Bw4 in the innate immune
response against HIV. Of note, the highly expressed, highly inhibitory
KIR3DL1*h alleles strongly enhance protection conferred by Bw4-80I
alleles, including B*57 specifically, an unexpected result given the
protective effect of a putatively activating genotype, KIR3DS1 + Bw4-
80I, against AIDS progression17. These seemingly contrasting results
can be explained logically by a model in which greater dependency on
the expression of specific KIR3DL1 + Bw4 receptor-ligand pairs for
NK cell inhibition in the resting state (where KIR3DL1*h 4
KIR3DL1*l) results in more pronounced NK cell responses when
that inhibition is abrogated in the face of infection. This model is con-

sistent with recent studies implicating inhibitory receptors for MHC
class I in the education and eventual killing capacity of NK cells19–21.

RESULTS
KIR3DL1*004 + Bw4 slows progression to AIDS
We compared the frequencies of each KIR3DL1 allele in our African
American and European American subjects, and the most notable
racial differences observed were with KIR3DL1*015 (a highly expressed
allele), which was by far the most common allele in African
Americans, and, as reported previously, KIR3DS1 (ref. 17) (Fig. 1).
As was the case for the KIR3DS1 + Bw4-80I effect17,18, the genetic
effects described here were consistent across the two main ethnic
groups based on analyses stratified by ancestry (see Methods). All
statistics provided in this report were derived from analyses stratified
by race.

The influence of individual KIR3DL1 alleles on AIDS progression
(see Methods for a description of the AIDS outcomes) was tested in a
cohort of 915 HIV+ individuals whose date of seroconversion was
known within a period of 6 months on average (seroconverters). In
order to eliminate confounding by the protective effect of KIR3DS1 +
Bw4-80I, individuals with this compound genotype were removed
from all analyses described herein. (Our previous study showing
protection with this compound genotype17 was performed in this
same cohort). HLA-B Bw4 (and not HLA-B Bw6) allotypes serve as
ligands for KIR3DL1 subtypes5,7. In Bw6/Bw6 individuals, it does not
matter which KIR3DL1 subtype is present because the ligand is absent,
so the KIR3DL1 molecule is nonfunctional in these individuals. As the
Bw6/Bw6 group does not contain any KIR3DL1 + HLA-B genotype
combinations to confound our analyses, we used this group of
individuals as a consistent control group for every analysis of
KIR3DL1 subtypes, except as noted otherwise. Using Bw6/Bw6 as a
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Figure 1 Allele frequency of KIR3DL1 alleles and HLA-B Bw4 subtypes.

The frequency of each variable is shown for African Americans and

European Americans.
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Figure 2 Effect of KIR3DL1*004 + HLA-B Bw4 on AIDS progression.

Individuals with KIR3DL1*004 and Bw4 and those lacking this compound

genotype were compared with individuals homozygous for HLA-Bw6 for two

AIDS outcomes. The subjects were seroconverters of all racial groups in

combined cohorts. Relative hazard (RH) and significance (P) are given for

Cox proportional model analyses.
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consistent reference group allowed direct comparisons of the degrees
of effects conferred by distinct KIR3DL1 + Bw4 subtypes. In the
presence of Bw4, KIR3DL1*004 showed the most significant protec-
tion relative to all other KIR3DL1 alleles (relative hazard (RH) ¼ 0.50
and 0.59, P¼ 0.0001 and 0.001; the first value in each case refers to the
AIDS1987 outcome analysis and the second to the CD4+ T-cell
count o 200 cells/mm3 outcome analysis (see Methods), and this
convention will apply wherever two statistics are given; Fig. 2 and
Supplementary Table 1 online). The q value (the expected proportion
of false positives22) for this association (q ¼ 0.00005 and 0.0002)
indicates the extreme unlikelihood that this is a false positive discovery
(Supplementary Table 1). The protective effect of KIR3DL1*004 was
completely dependent on the presence of Bw4, as indicated by the lack
of any effect in a comparison of individuals with a Bw6/Bw6 genotype
who either had KIR3DL1*004 (Bw6/Bw6 + KIR3DL1*004; N ¼ 86
and 81) or did not (Bw6/Bw6 + no KIR3DL1*004; N ¼ 254 and
246; RH ¼ 1.11 and 0.91, P ¼ 0.56 and 0.59). KIR3DL1*004 is a
unique KIR3DL1 allotype in that it is retained within the cell11, a
characteristic that has led to its functionality being called into
question. Slow progression to AIDS among individuals carrying
KIR3DL1*004 + Bw4 raises the possibility that the KIR3DL1*004
molecule may actually bind Bw4 molecules intracellularly with
functionally relevant consequences, a possibility that will require
further investigation.

Effects of KIR3DL1 allelic groups + Bw4 on AIDS progression
The Bw4 alleles as a group show protection against AIDS progres-
sion14, and at least part of this protection can be attributed to two
independent KIR + HLA compound genotypes: (i) KIR3DS1 + Bw4-
80I (ref. 17) and (ii) KIR3DL1*004 + Bw4 (Supplementary Table 1;
Fig. 2). The remaining KIR3DL1 alleles can be divided into one of two
groups: the KIR3DL1*h (*001, *002, *008, *015, *009) or KIR3DL1*l
(*005, *007) groupings, which were defined previously by KIR3DL1
expression patterns and, in some cases, corresponding inhibitory
capacity6,9,10. Furthermore, in terms of intensity of staining and
percentage of NK cells expressing the allotype, *h/*h individuals
show significant differences from both *h/*l and *l/*l, but *h/*l and
*l/*l do not show any observable difference from one another10. To test

whether the high-expression alleles differ from the low-expression
alleles, individuals were divided into one of two groups: (i) individuals
who carried KIR3DL1*h in the absence of KIR3DL1*l (i.e., KIR3DL1
*h/*h or KIR3DL1*h/*004; abbreviated as KIR3DL1*h/*y, where
*y ¼ *h or *004), and (ii) individuals with at least one copy of
KIR3DL1*l (KIR3DL1*l/*l, KIR3DL1*l/*h, or KIR3DL1*l/*004; abbre-
viated as KIR3DL1*l/*x, where *x ¼ *l, *h, or *004). (Individuals with

Table 1 Effect of distinct allelic combinations of KIR3DL1 and HLA-Bw4 on AIDS progression

Outcome Genotype N RH 95% CI P value Test for trend N P for trend

CD4 o 200 3DL1*h/*y+Bw4 306 0.70 0.56–0.88 0.002 3DL1*h/*y+Bw4 versus 306 0.002

3DL1*l/*x +Bw4 182 0.77 0.59–1.00 0.05 3DL1*l/*x +Bw4 versus 182

Bw6/Bw6 327

3DL1*h/*y+Bw4-80I 186 0.61 0.45–0.81 0.001 3DL1*h/*y+Bw4-80I versus 186 0.001

3DL1*l/*x +Bw4-80I 87 0.89 0.64–1.25 0.51 3DL1*l/*x +Bw4-80I versus 87

Bw6/Bw6 327

3DL1*h/*y+Bw4-80T 148 0.82 0.62–1.08 0.15 3DL1*l/*x +Bw4-80T versus 148 0.01

3DL1*l/*x +Bw4-80T 113 0.68 0.50–0.94 0.02 3DL1*h/*y+Bw4-80T versus 113

Bw6/Bw6 327

AIDS1987 3DL1*h/*y+Bw4 317 0.66 0.51–0.86 0.002 3DL1*h/*y+Bw4 versus 317 0.001

3DL1*l/*x +Bw4 194 0.79 0.59–1.06 0.12 3DL1*l/*x +Bw4 versus 194

Bw6/Bw6 340

3DL1*h/*y+Bw4-80I 194 0.56 0.40–0.80 0.001 3DL1*h/*y+Bw4-80I versus 194 0.001

3DL1*l/*x +Bw4-80I 94 0.79 0.53–1.19 0.26 3DL1*l/*x +Bw4-80I versus 94

Bw6/Bw6 340

3DL1*h/*y+Bw4-80T 152 0.76 0.56–1.03 0.08 3DL1*l/*x +Bw4-80T versus 152 0.05

3DL1*l/*x +Bw4-80T 119 0.73 0.52–1.04 0.08 3DL1*h/*y+Bw4-80T versus 119

Bw6/Bw6 340

P values are based on comparisons between the genotypic variable listed and the Bw6/Bw6 control group. 3DL1*h/*y: KIR3DL1*h/*h or KIR3DL1*h/*004; 3DL1*l/*x: KIR3DL1*l/*l,
KIR3DL1*l/*h or KIR3DL1*l/*004. CD4, CD4+ T-cell count (cells/mm3); CI, confidence interval.
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Figure 3 Effect of KIR3DL1 + HLA-B Bw4 genotypes on progression to

CD4+ T-cell count o 200 cells/mm3. (a) KIR3DL1 genotypes with Bw4-80I.

(b) KIR3DL1 genotypes with Bw4-80T. Relative hazard (RH) and P values
are based on comparisons between the specific genetic variables listed and

Bw6/Bw6. The KIR3DL1*h/*y group includes KIR3DL1*h/*h and

KIR3DL1*h/*004 individuals, and the KIR3DL1*l/*x group includes

KIR3DL1*l/*l, KIR3DL1*l/*h and KIR3DL1*l/*004 individuals.
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KIR3DL1*004 were not excluded from further analyses because this
allele was observed at an equal percentage in the *h and *l groups, and
the protection conferred by KIR3DL1*004 + Bw4 was not significantly
different in the presence of *h versus *l). Although KIR3DL1*h/*y +
Bw4 and KIR3DL1*l/*x + Bw4 were each protective compared with
Bw6/Bw6, KIR3DL1*h/*y showed a more significant effect (RH ¼ 0.66
and 0.70, P ¼ 0.002 for KIR3DL1*h/*y + Bw4 and RH ¼ 0.79 and
0.77, P ¼ 0.12 and 0.05 for KIR3DL1*l/*x + Bw4; Table 1). Thus, a
consistent trend showing more pronounced protection proceeded as
follows: KIR3DL1*h/*y + Bw4 4 KIR3DL1*l/*x + Bw4 4 Bw6/Bw6
(trend P ¼ 0.001 and 0.002).

KIR3DL1*h/*y + Bw4-80I protects against AIDS progression
In studies performed to date, HLA-B allotypes with Bw4-80I behave
as stronger ligands for KIR3DL1 than do allotypes with Bw4-80T
(refs. 6,7). Although this stratification had no effect on KIR3DL1*004
protection (data not shown), the protection conferred by KIR3DL1
*h/*y + Bw4 can be attributed primarily to the subset with
KIR3DL1*h/*y + Bw4-80I (RH ¼ 0.56–0.61, P ¼ 0.001; Table 1). In
contrast, KIR3DL1*l/*x showed no significant protection in the
presence of Bw4-80I, although this KIR + HLA combination did
tend toward protection compared with the Bw6/Bw6 group (RH ¼
0.79 and 0.89; Table 1 and Fig. 3). Indeed, KIR3DL1*h/*y + Bw4-80I
was borderline significantly more protective than KIR3DL1*l/*x +
Bw4-80I in a stringent, direct comparison of the two groups (RH ¼
0.63 and 0.66, P ¼ 0.06 and 0.04; Supplementary Table 2 online).
KIR3DL1*l/*x did, however, show some protection against CD4+

T-cell count o 200 cells/mm3 (an earlier outcome than AIDS1987,
which includes HIV infection plus an AIDS-defining illness) in the
presence of Bw4-80T (RH ¼ 0.68, P ¼ 0.02; Table 1 and Fig. 3).
Overall, these data support a high-affinity ligand-receptor interaction
between Bw4-80I and KIR3DL1*h, and raise the possibility of greater
affinity of KIR3DL1*l allotypes for ligands containing Bw4-80T than
for those containing Bw4-80I. A significant trend for most protective
to least protective proceeded as KIR3DL1*h/*y + Bw4-80I
4 KIR3DL1*l/*x + Bw4-80I 4 Bw6/Bw6 (trend P ¼ 0.001; Table 1).

Synergism between specific Bw4 alleles and KIR3DL1*h and *l
HLA-B*57 and B*27 are the two most protective alleles in our cohorts
of HIV-infected individuals23,24, and a sizeable body of literature has
indicated that cytotoxic T lymphocytes restricted by these allotypes
serve as the basis for their exceptional ability to control HIV (reviewed
in ref. 13). All B*57 allelic subtypes encode members of the Bw4-80I
group of allotypes, whereas all of the B*27 subtypes in our cohorts,
with the exception of six subjects with B*2702, encoded Bw4-80T

Table 2 Effect of combinations of KIR3DL1 and HLA-B on MVL

Without covariablesa

MVL o
2,000

MVL 4
10,000

MVL o
2,000

MVL 4
10,000

MVL o
2,000

MVL 2,000–

10,000

MVL 4
10,000

N (%) N (%) OR 95% CI P value N (%) N (%) OR 95% CI P value N (%) N (%) N (%)

P for

trend

Bw6/Bw6 43

(17.3)

205

(82.7)

1.00 43

(17.3)

205

(82.7)

1.00 43

(16.0)

21

(7.8)

205

(76.2)

3DL1*h/*y + Bw4-80I 63

(47.7)

69

(52.3)

0.24 0.14–

0.40

6 � 10�8 22

(42.3)

30

(57.7)

0.29 0.15–

0.59

5 � 10�4 63

(42.3)

17

(11.4)

69

(46.3)

3 � 10-8

3DL1*l/*x + Bw4-80I 25

(32.1)

53

(67.9)

0.43 0.23–

0.79

0.007 10

(26.3)

28

(73.7)

0.55 0.24–

1.28

0.17 25

(29.4)

7

(8.2)

53

(62.4)

0.007

3DL1*004 + Bw4 40

(34.2)

77

(65.8)

0.36 0.21–

0.62

2 � 10�4 25

(41.0)

36

(59.0)

0.27 0.14–

0.50

5 � 10�5 40

(32.3)

7

(5.7)

77

(62.1)

4 � 10�4

3DL1*h/*y + B*57 39

(69.6)

17

(30.4)

0.10 0.05–

0.19

7 � 10�11 39

(62.9)

6

(9.7)

17

(27.4)

4 � 10�11

3DL1*l/*x + B*57 10

(37.0)

17

(63.0)

0.38 0.15–

0.95

0.04 10

(33.3)

3

(10.0)

17

(56.7)

0.02

3DL1*h/*y + B*27 8

(33.3)

16

(66.7)

0.37 0.14–

1.00

0.05 8

(25.8)

7

(22.6)

16

(51.6)

0.02

3DL1*l/*x + B*27 10

(47.6)

11

(52.4)

0.22 0.08–

0.59

0.003 10

(41.7)

3

(12.5)

11

(45.8)

0.002

P values are based on comparisons between the genotypic variable listed and the Bw6/Bw6 control group. Genotype symbols are as defined in Table 1. CI, confidence interval.
aFor the Bw4-80I groups, all individuals with KIR3DL1*004, B*57 and B*27 were removed from the analysis. For the KIR3DL1*004 group, all individuals with B*57, B*27 and
KIR3DL1*h/*y + Bw4-80I were removed from the analysis.
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Figure 4 Synergistic influence of specific HLA-B allotypes with KIR3DL1*h

and KIR3DL1*l genotypes on progression to two AIDS outcomes. (a) HLA-

B*57; (b)HLA-B*27. Bw6/Bw6 individuals were used as the control group in

each analysis. The number of individuals in each category is shown below

the bars. The KIR3DL1*h/*y group includes KIR3DL1*h/*h and

KIR3DL1*h/*004 individuals, and the KIR3DL1*l/*x group includes

KIR3DL1*l/*l, KIR3DL1*l/*h and KIR3DL1*l/*004 individuals.
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allotypes. As KIR3DL1*h/*y showed a significant epistatic relationship
with Bw4-80I, but not with Bw4-80T, against HIV disease, we tested
the hypothesis that KIR3DL1*h/*y would enhance the protective effect
of B*57, but not B*27 (with the six individuals with B*2702 removed
from the analyses). Using Bw6/Bw6 individuals as the control group in
each analysis, both the B*57 + KIR3DL1*h/*y and the B*57 +
KIR3DL1*l/*x groups were protective against both AIDS outcomes,
but the B*57 effect was enhanced in the presence of KIR3DL1*h/*y as
compared with KIR3DL1*l/*x (RH ¼ 0.26 and 0.30, P ¼ 0.003 and
0.0005 for B*57 + KIR3DL1*h/*y; RH ¼ 0.60 and 0.50, P ¼ 0.19 and
0.06 for B*57 + KIR3DL1*l/*x, Fig. 4, Supplementary Table 3 online).
The B*57 + KIR3DL1*h/*y genotype conferred stronger protection
against AIDS progression than any other host genotype identified to
date. The progressive effect of B*57 in the presence of distinct
KIR3DL1 groups indicates that the overall protection conferred by
B*57 does not stem solely from its function as a cytotoxic
T lymphocyte–restricting element in the acquired immune response,
but perhaps also as a mediator of innate immunity.

The group of individuals with B*27-80T (B*2705, N ¼ 60 and
B*2709, N ¼ 1), on the other hand, showed borderline significant
protection in the presence of KIR3DL1*l/*x and only very moderate,
nonsignificant protection in the presence of KIR3DL1*h/*y (RH ¼
0.44 and 0.47, P ¼ 0.05 and 0.04 for B*27 + KIR3DL1*l/*x; RH ¼ 0.70
and 0.82, P ¼ 0.25 and 0.46 for B*27 + KIR3DL1*h/*y, Fig. 4,
Supplementary Table 3). The more prominent protection of B*57 in
the presence of KIR3DL1*h/*y than in the presence of KIR3DL1*l/*x
accurately parallels the interaction between KIR3DL1*h/*y and
Bw4-80I in general, as described above.

Consistent KIR3DL1 + Bw4 effects on plasma HIV RNA
Several KIR3DL1 + Bw4 genotypes showed protection against HIV
disease progression relative to the control group Bw6/Bw6, the
strongest and most conclusive of which included the following:

KIR3DL1*h/*y + Bw4-80I, KIR3DL1*004 +
Bw4, KIR3DL1*h/*y + B*57, and to a lesser
extent, KIR3DL1*l/*x + B*27. We tested the
potential effect of these and related genotypes
on MVL measurements that were available
for 891 subjects from five studies, 508 of
whom were unique to these analyses and
were not included in the disease progression
analyses. Based on their mean viral load
(MVL, given throughout in RNA copies per
ml plasma), each individual was categorized
into one of three groups: (i) MVL o 2,000,
(ii) MVL ¼ 2,000–10,000 or (iii) MVL 4
10,000. We then determined the frequency of
each compound genotype within each of
these groupings and compared it with that
of Bw6/Bw6.

First we directly compared the two extreme
MVL groupings. The relative frequency of
KIR3DL1*h/*y + Bw4-80I was higher than
that of Bw6/Bw6 in the MVL o 2,000 group-
ing, whereas the opposite was observed in the
MVL 4 10,000 grouping, and these distribu-
tions were significantly different (odds ratio
(OR) ¼ 0.24 for KIR3DL1*h/*y + Bw4-80I,
P ¼ 6 � 10�8; Table 2). Furthermore, they
remained significantly different upon
removal of individuals positive for B*57,

B*27 and/or KIR3DL1*004 from the KIR3DL1*h/*y + Bw4-80I
group (OR ¼ 0.29, P ¼ 5 � 10�4). KIR3DL1*l/*x + Bw4-80I also
showed significant protection compared with the Bw6/Bw6 group (OR
¼ 0.43, P ¼ 0.007; Table 2), but the effect was diminished upon
removal of B*57, B*27 and/or KIR3DL1*004 (OR ¼ 0.55, P ¼ 0.17).
Further, protection conferred by KIR3DL1*l/*x + Bw4-80I was less
than that conferred by KIR3DL1*h/*y + Bw4-80I, with borderline
significance, in a direct comparison of these two Bw4-80I groupings
(OR ¼ 0.58, P ¼ 0.08; Supplementary Table 2). KIR3DL1*004 + Bw4
also showed significant protection relative to the Bw6/Bw6 control
group (OR ¼ 0.36, P ¼ 2 � 10�4), and the distributions remained
significant upon removal of all individuals with B*57, B*27, and/or
KIR3DL1*h/*y + Bw4-80I from the KIR3DL1*004 + Bw4 group
(OR ¼ 0.27, P ¼ 5 � 10�5; Table 2). These viral load data concur
well with the disease progression data and strongly support protective
roles for KIR3DL1*h/*y + Bw4-80I and KIR3DL1*004 + Bw4, even
when the samples that overlap between these two groups are removed
from the analyses (Supplementary Table 4 online).

The individual effects of B*57 (a Bw4-80I allele) and B*27
(a Bw4-80T allele) on HIV MVL closely followed and emphasized
the patterns of association observed in the progression analysis
(Fig. 4): in comparison with the Bw6/Bw6 group, B*57 showed
exceptionally robust protection in the presence of KIR3DL1*h/*y
(OR ¼ 0.1, P ¼ 7 � 10�11; Table 2), an effect that was
diminished in the presence of KIR3DL1*l/*x (OR ¼ 0.38,
P ¼ 0.04), whereas B*27 was more protective in the presence of
KIR3DL1*l/*x (OR ¼ 0.22, P ¼ 0.003) than in the presence of
KIR3DL1*h/*y (OR ¼ 0.37, P ¼ 0.05). A direct comparison between
the B*57 + KIR3DL1*h/*y and the B*57 + KIR3DL1*l/*x effects on
viral load indicated a significantly stronger protective effect of
B*57 + KIR3DL1*h/*y (OR ¼ 0.23, P ¼ 0.009; Supplementary
Table 2). These data indicate that KIR3DL1 allotypes can
strongly modulate the protection conferred by B*57 in particular,
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Figure 5 KIR3DL1 + Bw4 continuum of protection. Genotypes are ordered by degree of protection in

terms of (a) disease progression and (b) control of viral load. The most protective genotypes are shown

on the right of the vertical scale and the alternative (less protective) genotypes are shown on the left.

(a) Relative hazard ranges for the two AIDS outcomes (CD4+ T-cell count o 200 cells/mm3 and

AIDS1987) relative to the Bw6/Bw6 control group. (b) Odds ratios (dots) of protective genotypes

relative to the Bw6/Bw6 control group in terms of their distributions in the o 2,000 versus the

4 10,000 MVL groupings. Purple bars and dots, B*57 with KIR3DL1 genotypes; green bars and dots,

B*27 with KIR3DL1 genotypes; light blue bars and dots, Bw4-80I with KIR3DL1 genotypes; dark blue

bar, Bw4-80I+KIR3DS1; yellow bars, Bw4 with or without KIR3DL1*004.
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and imply an important role for B*57 (and possibly B*27) in the
innate immune response against HIV.

In a second set of analyses, the differences in frequency trends across
the three viral load divisions (MVL o 2,000, MVL ¼ 2,000–10,000,
and MVL 4 10,000) were compared between individual KIR3DL1 +
Bw4 genotypic groups and the Bw6/Bw6 group (Table 2, far right
columns). In each comparison, the relative strength and significance of
these differences reflected that observed in the comparisons of the two
extreme groups (MVL o 2,000 and MVL 4 10,000).

DISCUSSION
The functional consequences of allelic variability at the KIR3DL1
locus have been studied in greater detail than that of any other
single KIR gene6,10. In this study, we grouped inhibitory KIR3DL1
alleles based on distinct functional characteristics and identified
differential protective effects of these allelic groups on HIV disease
progression and viral load. KIR3DL1*004 represented the most
protective single allele at this locus, and its protection was
completely dependent on the presence of HLA-B alleles with the
Bw4 motif, the ligands for inhibitory KIR3DL1 allotypes. We found
this result surprising, as the KIR3DL1*004 molecule is retained
within the cell, offering the possibility that it has a null phenotype.
The genetic data presented herein dispel this hypothesis and imply a
novel intracellular function for KIR3DL1*004 that directly or
indirectly involves the Bw4 ligand. Alternatively, the KIR3DL1*004
molecule may be marking (by linkage disequilibrium) another neigh-
boring locus that confers protection in an additive or synergistic
manner with Bw4.

Previous data have indicated a functional distinction between the
strongly inhibitory KIR3DL1*h alleles and the weakly inhibitory
KIR3DL1*l alleles9,10, and based on data presented herein these
groupings also have differential effects in the HIV disease process.
Overall, a pattern emerged indicating relatively strong protection
through KIR3DL1*h + Bw4-80I, and a weak protective effect through
KIR3DL1*l + Bw4-80T. These data were reinforced by parallel con-
clusions when the individual B*57 (Bw4-80I) and B*27 (Bw4-80T)
alleles were examined and shown to be most protective in the presence
of KIR3DL1*h/*y and KIR3DL1*l/*x, respectively. Previous functional
and genetic studies have also indicated a stronger relationship of some
KIR3DL1 allotypes with Bw4-80I than with Bw4-80T (refs. 6,7,
10,17,25), but our genetic data imply greater complexity in the
receptor-ligand interactions between these molecules. An analysis of
MVL data determined from a group of 891 individuals, only 383 of
whom overlapped with the 915 individuals used in the disease
progression analyses, showed protective effects of the various
KIR3DL1 + HLA-B genotypes strongly consistent with those observed
in disease progression analyses. Thus, the influence of these genotypes
on disease course occurs early after infection, especially for B*57 +
KIR3DL1*h/*y, and may continue throughout the chronic phase of
infection. The protection against AIDS progression conferred by
various combinations of KIR3DL1 + Bw4 genotypes reported herein
represents the first data to support a consequential impact of differ-
ential KIR3DL1 allotypic functions on disease outcome of any sort.
There was a continuum of synergistic effects of the KIR3DL1 and
HLA-B loci (including KIR3DS1 + Bw4-80I) in order by degree of
protection (disease progression, Fig. 5a; MVL, Fig. 5b; see also Table 2
and Supplementary Table 5 online) emphasizing the complexity and
strength of protection conferred by combinations of these two loci.
There is no other pair of loci evaluated thus far that together shows
the diversity in protective effects against AIDS (or any other disease)
of that observed with KIR3DL1;3DS1 and HLA-Bw4.

The activating KIR3DS1 in the presence of Bw4-80I associates with
slow progression to AIDS17, lower viral load18, and protection against
opportunistic infections during HIV infection18. Based on these data,
we proposed that NK cell and/or CD8+ T cell activation through a
KIR3DS1–Bw4-80I interaction protects against HIV. Further, activat-
ing KIR genotypes may protect against HIV infection26. This model of
effector cell activation leading to protection appears incongruent with
the protection conferred by inhibitory KIR3DL1 subtypes (particularly
those that are expressed at high levels and transmit strong inhibitory
signals) in the presence of their class I ligands, as shown herein.
However, these findings are actually very compatible given our know-
ledge of the functional development of NK cells and the role of
inhibitory receptors in this development. Broadly accepted models of
NK cell repertoire development suggest that NK cells continue to
acquire inhibitory receptors until sufficient signals are generated to
quench autoreactivity through recognition of autologous class I
ligands27–29. The resultant population of NK cells utilizes various
KIR + HLA class I pairings that confer various degrees of inhibition to
achieve overall nonresponsiveness to self. Therefore, the larger the
contribution of a given receptor-ligand pairing to NK cell inhibition
under ‘normal’ conditions, the more vigorous an effector cell response
will be when the interaction between that inhibitory receptor and its
ligand is disrupted. The application of this concept to KIR3DL1
subtypes is particularly apropos, as there are clear distinctions between
KIR3DL1*h and KIR3DL1*l subtypes in terms of the level of their
expression on a per-cell basis9, the overall frequency of NK cells
expressing these subtypes10 and the ability of HLA-Bw4 to increase the
frequency of NK cells expressing KIR3DL1*h to a significantly greater
extent than KIR3DL1*l10. The activation potential of an NK cell
population would also be subject to the affinity between the particular
KIR3DL1-Bw4 allotypic pair, an effect implied by the synergism
between KIR3DL1*h and B*57 and, alternatively, between KIR3DL1*l
and B*27 (Table 2 and Fig. 4).

Notably, this concept of greater inhibition during NK cell develop-
ment ultimately leading to more vigorous activation under appro-
priate conditions, such as viral infection, is consistent with data
implying inhibitory receptor involvement in the developmental reg-
ulation of NK cell responsiveness8,19–21,30,31. These data indicate that
weak or missing inhibitory signals during NK cell development result
in poor (or complete lack of) activating potential by that NK cell,
whereas strong inhibitory signals during NK cell development lead to
greater potential for NK cell activation upon interaction with an
aberrant target cell. Thus, engagement of highly expressed, highly
inhibitory KIR3DL1 allotypes with their ligands may ultimately secure
stronger NK cell responses in the event of viral infection, such as HIV,
when KIR3DL1-mediated inhibition is suspended.

The complexity of KIR3DL1 is steadily being disentangled by a
combination of genetic and functional studies that feed off one
another. One allele at this locus, the activating KIR3DS1, has been
implicated in resistance to both HIV17 and hepatitis C virus32, and in
susceptibility to cervical cancer33. It is now clear that variation among
the inhibitory KIR3DL1 subset of alleles also has an influence on HIV
disease, and dissection of their differential influence is worth investi-
gating in other diseases—such as cervical neoplasia, in which the
presence of Bw4 associates with decreased risk of high-grade cervical
lesions and cancer33. Of the three classical HLA class I loci, HLA-B is
the most rapidly evolving34 and is also the most consequential in the
acquired immune response against HIV from both functional and
genetic epidemiological perspectives23,35. Notably, however, among
HLA-B alleles, Bw4 alleles show greater protection against HIV than
Bw6 alleles, an observation that strongly implicates a defense
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mechanism involving KIR3DL1, as shown herein. Like HLA-B, the
KIR3DL1 locus is also evolving rapidly compared with most other KIR
loci36, and in our cohorts it is this locus that shows the strongest
effects on HIV disease. It is entirely plausible that coordinated
coevolution of these two loci37,38 is driven by pathogens such as
HIV, resulting in a primary influence of specific HLA-B + KIR3DL1
allelic combinations in the innate immune response against this virus.

METHODS
Subjects. We used data from a total of 1,496 HIV+ individuals in the studies

described. For the disease progression studies, 915 HIV-1–infected subjects for

whom the dates of seroconversion were known were derived from four cohorts:

the Multicenter AIDS Cohort Study (MACS)39, the Multicenter Hemophilia

Cohort Study (MHCS)40, the San Francisco City Clinic Cohort (SFCCC)41 and

the AIDS Linked to Intravenous Experience (ALIVE)42. For the viral load

studies, 891 subjects for whom viral load data was available were obtained from

five cohorts: the MACS, the Swiss HIV Cohort (http://www.shcs.ch), the Study

on the Consequences of Protease Inhibitor Era (SCOPE) cohort43, the

Massachusetts General Hospital (MGH) Controller Cohort, and the NIAID

long term nonprogressor cohort44. There were 383 individuals whose clinical

data were used in both the disease progression and the viral load studies. Thus,

508 were used only in the viral load studies and 532 were used only in the

disease progression studies. This study was approved by the protocol review

office of the US National Cancer Institute institutional review board. Informed

consent was obtained at the study sites from all individuals.

HLA genotyping and KIR3DL1 allelic typing. We performed genotyping of

the HLA locus following the PCR-SSOP (sequence-specific oligonucleotide

probing) typing protocol recommended by the 13th International Histo-

compatibility Workshop (http://www.ihwg.org/components/ssopr.htm). For

KIR3DL1 subtyping, polymorphic exons 3, 4, 5, 7, 8 and 9 were selectively

amplified in four PCR reactions using locus-specific primers (a separate PCR

for each of exons 3, 4 and 5, and a fourth PCR for exons 7, 8 and 9 combined).

The PCR products were blotted on nylon membranes and hybridized with a

panel of 56 sequence-specific oligonucleotide (SSO) probes designed to detect

unique sequence motifs of known KIR3DL1 alleles (Supplementary Table 6

online). KIR3DL1 alleles were assigned by the reaction patterns of the SSO

probes based on the known KIR3DL1 sequences. Ambiguous SSO typing results

were resolved by sequencing analysis.

Plasma HIV RNA measurements. Viral load measurements (HIV RNA copies

per ml plasma in the absence of any drug therapy) determined previously from

891 HIV+ individuals were available for analysis. MVL was determined for each

individual and categorized into one of three groupings: o2,000, 2,000–10,000,

and 410,000. The average number of measurements per person was 7.9 with a

range of 1–52 and a total of 7,084 measurements. The ethnic breakdown was as

follows: European American (N ¼ 685), African American (N ¼ 136), other

(N ¼ 53), unknown (N ¼ 17).

Statistical analysis. All statistics provided were derived from analyses stratified

by race. Two AIDS-related outcomes were considered in the survival analysis:

(i) a CD4+ T-cell count of o200 cells/mm3 and (ii) progression to AIDS

according to the 1987 definition of the US Centers for Disease Control, which

includes HIV infection plus an AIDS-defining illness45. In order to eliminate

confounding by the previously described protective effect of KIR3DS1 + Bw4-

80I, individuals with this compound genotype were removed from all analyses.

With the exception of the comparisons listed in Supplementary Table 2, all test

variables were compared with those of the Bw6/Bw6 control group.

The influence of individual and groups of KIR3DL1 alleles on AIDS

progression was tested using Cox model analyses. We divided KIR3DL1 alleles

into high- and low-expressing groups based on the previously defined expres-

sion patterns. The high-expressing alleles (KIR3DL1*h) in our cohorts were

*001, *002, *008, *015 and *009, and the low-expressing alleles (KIR3DL1*l)

were *005 and *007. KIR3DL1*h/*h individuals show significant differences

from both KIR3DL1*h/*l and *l/*l, but KIR3DL1*h/*l and *l/*l do not show

any observable differences from one another in terms of intensity of staining

and percentage of NK cells expressing the allotype10. Furthermore, the high-

expression KIR3DL1 alleles are more common than the low-expression alleles,

resulting in a small KIR3DL1*l/*l genotypic frequency (13% in our entire

dataset, 2.7% of whom had Bw4-80I and 4.7% of whom had Bw4-80T). For

these biological and practical reasons, the tests for different effects of high-

versus low-expression alleles involved the division of individuals with only

high-expression alleles from those with at least one low-expression allele.

We used SAS 9.1 (SAS Institute) for data management and statistical analyses.

PROC FREQ was used to compute frequencies on individual variables. PROC

LOGISTIC was used for categorical analyses to obtain odds ratios and 95%

confidence intervals. PROC LIFETEST and PHREG were used for Kaplan-Meier

and Cox model analyses. Statistical significance refers to two-sided P values of

o0.05. The q value shown in Supplementary Table 1 is the false discovery rate.

The false discovery rate is the expected proportion of false positives when

declaring the significance level equal to P; q value estimates were calculated for

the effect of individual KIR3DL1 alleles with HLA-Bw4 on AIDS progression

using the q value package, v1.1 in the R statistical computing program22.

Note: Supplementary information is available on the Nature Genetics website.
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